

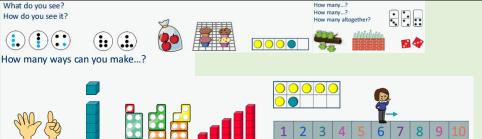
Calculation Guidance for Reception to Year 6

Addition

Reception

Vocabulary

add adding adding more addition altogether and


double how many fewer is... than...? how many left/left over? how many more is... than...? how many more to make...? make

subtraction minus subtracting more one/two/ten less sum one/two/ten more take (away)

plus taking away

subtract total

Key Representations and Resources

Mental Methods: Children should learn

Subitise groups. Add two subitised groups. Use fingers to assist or counters, tens frame.

Add one more or one fewer using knowledge of number sequence.

Begin to know doubles facts 1+1, 2+2, 3+3, 4+4, 5+5. Know number bonds to 5 and begin to know bonds to 10. What do you see? How do you see it?

Concrete and Pictorial Representations

Part whole models, bar models and tens frames can be used to show how the parts combine (can be added together) to make the whole - physical resources such as counters can be used before using numerals.

Using manipulatives such as counters, numicon, bead strings, dominoes, dice to aid addition calculations.

Moving to Abstract Representations

Bar models, part whole models with digits rather than physical counters/pictures.

Hidden from view objects in a box, add a quantity, how many in the box now?

Modelling of formal calculations eg.

$$4+1=5$$

Taught as fact families along with inverse operations.

Vocabulary

add(ed) difference (between) minus plus subtract/subtracting missing number addition equals altogether fact family near doubles subtraction calculation half/halve number bonds/pairs take away combine/combination number sentence how many...? total

Key Representations and Resources

7 7 7 4 3 8 7 15 Rekenreks – bonds to/ within 10 and 20, doubling/ halving

Mental Methods: Children should learn to

Count on from one part (the greatest part) e.g. 7+2=, 6+3=

Use known facts – Number bonds to 5, 10 and 20

Concrete and Pictorial Representations

Part whole models, bar models and tens frames can be used to show how the parts combine (can be added together) to make the whole - physical resources such as counters can be used before using numerals.

Tens frames, bar models, bead strings can be used to show how numbers increase by adding on. Children should be encouraged to subitise smaller numbers (rather than count every object) and count on from the greater number.

Adding by making 10 – **use of 10 frames** will encourage children to visually make the 10 and counting on before moving onto using number lines.

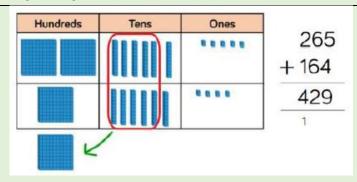
Rekenreks can be used to teacher number bonds, doubles and number facts (inverse, commutativity).

Moving to Abstract Representations

(Using concrete and pictorial resources alongside abstract representations such as number sentences/ calculations and number lines may be needed)

Number tracks and number lines can be used to support augmentation (counting on)

Addition is commutative, this means that tow numbers can be added together and the answer will be the same no matter what order they are (e.g. 6+2=8 and 2+6=8) Inverse is using the opposite operation. 4+3=7, 7-3=4 part whole models and bar models show how the parts can be added or subtracted – moving into using numerals to represent the numbers.


Year 2 Vocabulary adding sentence/story number facts smaller in total balances/balancing inverse numeral sum column(s) part-whole model whole tens larger count back multiple Mental Methods: Children should learn to Key Representations and Resources Count on from one part (the greatest part) e.g. 23+6=, 17=12+5 17=5+12 12+5=17 Calculations should be shown and written in a variety of ways as above including missing + 12=17 12+ =17 Use know facts – Number bonds to 5, 10, 20 and 100 38 + 5 = 43Count in 2s, 3s, 5s and 10s when adding multiples Rekenreks – bonds to/within 10 and 20, doubling/halving Partitioning and bridging through 10 Moving Towards a Written Method Partitioning in different ways and recombine. It is an essential prerequisite that children are confident in the number bonds of all numbers to 10 as emphasised in ... ones + ... ones = ... ones 3 ones + 1 one = 4 ones... tens + ... tens = ... tens 4 tens + 2 tens = 6 tensYear 1. 6 tens + 4 ones = 64Children should be taught to bridge through a multiple of 10 For example, in 8+7= being able to partition the 7 into 2 and 5 to make the corresponding 10. There are ones, so I do/do not need to make an exchange. ... ones = ... ten and ... ones 10 15 5 ones + 7 ones = 12 ones12 ones = 1 ten and 2 ones4 tens + 3 tens + 1 ten = 8 tens8 tens and 2 ones = 82

Vocabulary

balances/balancing bar model column addition/subtraction complete error function machine number trio part-whole model partition/partitioning

rearrange regroup related facts

Key Representations and Resources

Mental Methods: Children should learn to

Adjust calculations

Use stem sentences "We can adjust the parts but the whole must stay the same."

This structure will be explored using concrete (dienes and Counters) and pictorial (bar models and part whole).

$$98+353=100+351=451$$

Formal Written Methods (Compact)

Children should carry out the work with dienes and written calculations side by side so that they are able to see the connections between the representations and the abstract method and understand the equivalence of any exchanges.

Children should be continuously reminded that addition is commutative and the inverse (reverse) operation to subtraction.

Adding multiples of 1, 10 and 100

Pattern spotting and creation of generalisations, supported by accurate stem sentences, for example – "When adding on multiples of 10 the ones stay the same."

Concrete objects (dienes and Counters) are used to visualise the structures.

Vocabulary

column method/calculation complements

not equal to regrouping

rounding zero as a place holder

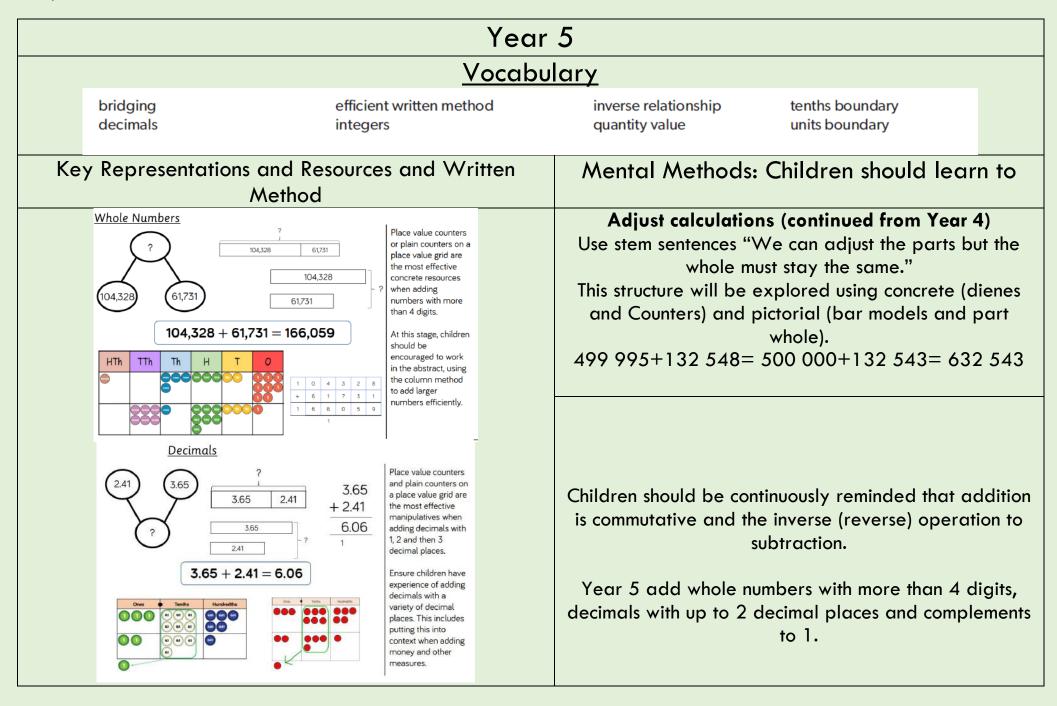
Key Representations and Resources

Hundreds Tens Ones 384 + 237 621 1 1

Formal Written Methods (Compact)

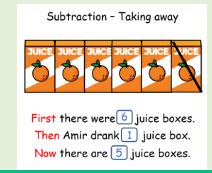
Children should be familiar with exchanging (Year 3). This should continue to be emphasised.

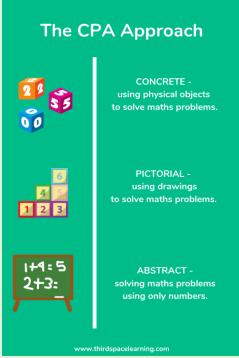
Children should carry out the work with counters and written calculations side by side so that they are able to see the connections between the representation and the abstract method. This should allow them to move quickly onto the more compact method.


Children should be continuously reminded that addition is commutative and the inverse (reverse) operation to subtraction.

Mental Methods: Children should learn to

Adjust calculations (continued from Year 3)


Use stem sentences "We can adjust the parts but the whole must stay the same."


This structure will be explored using concrete (dienes and Counters) and pictorial (bar models and part whole).

Year 6 Vocabulary above/below zero order of operations brackets positive negative Key Representations and Resources and Written Mental Methods: Children should learn to Method Adjust calculations (continued from Year 4) Whole Numbers Place value counters Use stem sentences "We can adjust the parts but the or plain counters on a 104.328 61,731 place value grid are whole must stay the same." the most effective 104.328 concrete resources This structure will be explored using concrete (dienes when adding numbers with more 61.731 and Counters) and pictorial (bar models and part than 4 digits. 104,328 + 61,731 = 166,059whole). At this stage, children should be 499 995+132 548= 500 000+132 543= 632 543 encouraged to work TTh in the abstract, using the column method 1 0 4 3 2 8 to add larger + 6 1 7 3 1 numbers efficiently. Children should be continuously reminded that addition 1 6 6 0 5 9 is commutative and the inverse (reverse) operation to Decimals subtraction. Place value counters and plain counters on a place value grid are 3.65 2.41 Year 6 add integers up to 1 million, decimals with up to the most effective manipulatives when 3 decimal places and negative numbers. 6.06 adding decimals with 1, 2 and then 3 decimal places. 3.65 + 2.41 = 6.06Ensure children have Know the order of operations. experience of adding decimals with a variety of decimal places. This includes putting this into context when adding × and + money and other + and -

Subtraction

Reception

Vocabulary

add adding adding more addition altogether and

double how many fewer is... than...? how many left/left over? how many more is... than...? how many more to make...? make

minus more one/two/ten less one/two/ten more

plus

subtraction subtracting sum

take (away) taking away

subtract total

Key Representations and Resources

Mental Methods: Children should learn

What do you see? How do you see it?

How many ways can you make ...?

Use fingers to assist or counters, tens frame. Add one fewer using knowledge of number sequence. Begin to know halving facts to half 10. Know number bonds up to 5 as inverse eg. 4-2=2and begin to know inverse bonds to 10.

Concrete and Pictorial Representations

Part whole models, bar models and tens frames can be used to show how the parts can be subtracted from the whole - physical resources such as counters can be used before using numerals.

Using manipulatives such as counters, numicon to visualise difference, bead strings.

Moving to Abstract Representations

Hidden from view objects in a box, take a quantity away in view, how many left in the box? Modelling of formal calculations eq.

Year 1 Vocabulary add(ed) difference (between) minus plus missing number subtract/subtracting addition equals altogether near doubles subtraction fact family half/halve calculation number bonds/pairs take away number sentence combine/combination how many...? total Mental Methods: Children should learn to Key Representations and Resources Count back using knowledge of one/two less e.g. 13-1= 7-2= Use knowledge of number bonds to 5, 10, 20 14 - 6 = 8Rekenreks bonds to / within 10 and 20.

Concrete and Pictorial Representations

Part whole models, bar models and tens frames will support subtraction as partitioning.

Tens frames, number tracks, single bar models and bead strings can support subtraction as reduction.

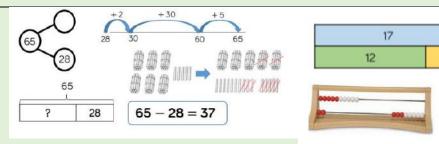
Cubes and bar models can support subtraction as finding the difference.

Moving to Abstract Representations

Using concrete and pictorial resources alongside abstract representations such as number sentences/calculations and number lines may be needed.

Number lines and number tracks can be used to support subtraction as reduction and partitioning. Children should be taught to partition by counting back to 10 then continuing to count back.

Vocabulary


row

adding sentence/story number facts smaller in total balances/balancing numeral inverse sum column(s) part-whole model whole tens larger count back multiple

Rekenreks - bonds to/within 10

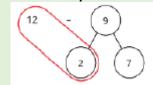
and 20, doubling / halving

Key Representations and Resources

17-12=5 17-5=12 12+5=17 5+12=17

number bonds to find subtraction

facts – tens frames and Rekenreks can support this


practically.

Mental Methods: Children should learn to

Count back using knowledge of one/two/ten less e.g. 72-10= 50-30= Use knowledge of number bonds to 5, 10, 20 and 100 Count back in 2s, 3s, 5s and 10s

Recall and use subtraction facts Subtracting a one digit number from a two to 20 and facts to 100 diait number

Bar models and part whole Children use their knowledge of bonds models show the relationship within 10 to partition and then subtract to between addition and 10. Tens frames will help children work subtraction. practically then moving to the more abstract representation. Children should use the inverse of

Subtracting a two digit number from a two diait number

Subtracting ones then 10s (not crossing 10)

10) and exchanging

Subtracting ones then 10s (crossing

Then moving onto using an empty number line.

Parts of the this guidance have been snipped from Power Maths © Pearson 2021 and ©White Rose Education 2024 https://whiteroseeducation.com/

Vocabulary

balances/balancing bar model column addition/subtraction complete error function machine number trio part-whole model partition/partitioning rearrange regroup related facts

Formal Written Method (Compact)

Hundreds Tens Ones 162

Children should be continuously reminded that subtraction is not commutative and is the inverse operation to addition.

Mental Methods: Children should learn to

Adjusting equations – "We can adjust the parts by the difference must stay the same."

This structure will be explored using concrete (dienes and PVC) and pictorial (bar models and part, part whole).

> Subtrahend adjusted -342 - 98 = 344 - 100 = 244

Subtracting multiples of 1, 10 and 100

Pattern spotting and creation of generalisations, supported by accurate stem sentences, for example -"When subtracting mulitples of 10 the ones stay the same."

Concrete objects (dienes and place value counters) are used to visualise the structures.

$$326 - 4 = 322$$

 $326 - 20 = 306$
 $326 - 200 = 126$

Vocabulary

column method/calculation complements

not equal to regrouping

rounding zero as a place holder

Formal Written Method (Compact)

Thousands Hundreds Tens Ones Ones Ones Ones Ones Ones Ones

³4357 - 2735 1622

Children should be familiar with exchanging (see Year 3). This should continue to be emphasised.
Children should carry out the work with counters and written calculations side by side so that they are able to see the connection between the representation and the abstract method. This should allow them to move quickly onto the more compact method.

Mental Methods: Children should learn to

Adjust (continued from Year 3)

Stem sentence – "We can adjust the parts but the difference must stay the same."

This structure will be explored using concrete (dienes and place value counters) and pictorial (bar models and part, part whole).

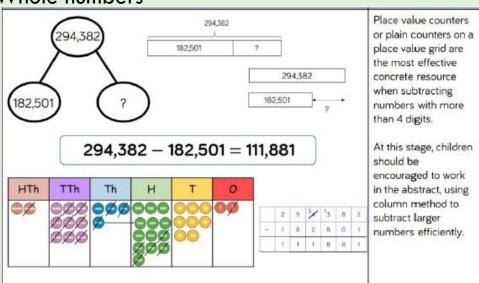
7574 - 997 = 7577 - 1000 = 6577

Children should be continuously reminded that subtraction is not commutative and is the inverse operation to addition.

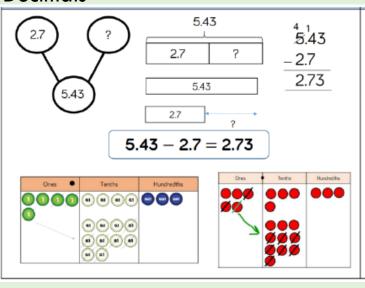
Year 5 and Year 6

Vocabulary

bridging decimals efficient written method integers


inverse relationship quantity value

tenths boundary units boundary


above/below zero brackets negative order of operations positive

Written Methods

Whole numbers

Decimals

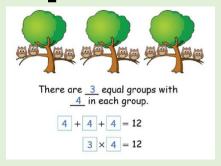
Place value counters and plain counters on a place value grid are the most effective manipulative when subtracting decimals with 1, 2 and then 3 decimal places.

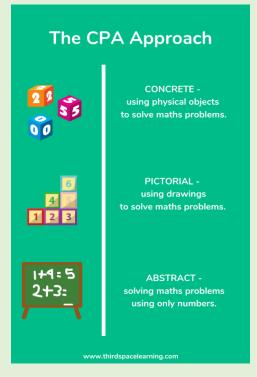
Ensure children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures.

Adjusting (continued from Year 4)

Stem sentence – "We can adjust the parts but the difference must stay the same."

This structure will be explored using concrete (dienes and place value counters) and pictorial (bar models and part, part whole).


Adjust the subtrahend

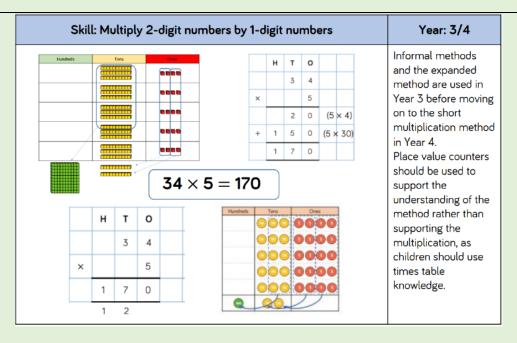

$$685,057 - 99,998 = 685,059 - 100,00 = 585,059$$

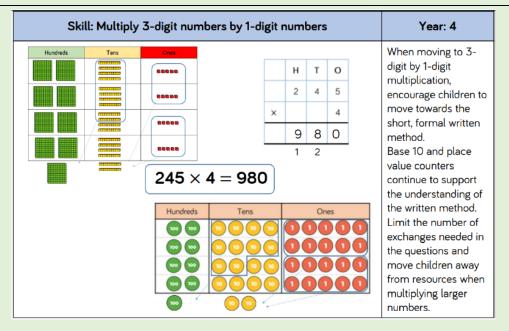
Adjust the minuend

$$100 - 56.89 = 99.99 - 56.88 = 43.11$$

Multiplication

Reception					
		<u>Vocak</u>	<u>oulary</u>		
	double each equal	fair sha group half		left over share (out) sharing	
Key Representa	tions and Re	sources	Mental Me	thods: Childre	en should learn to
Using real life reso	ources such w	hich come	Dou	uble facts to d	double 5.
in pairs- eg- shoes, socks to show doubles. Understanding of double- water bottles, mud kitchen, sand play, water play.			Odd and	even number	understanding.
Concrete and Pictorial Representations					
Doubling machine games Numicon to show doubles					


Year 1 and Year 2 Year1 Vocabulary Year2 altogether equivalent times array double/doubling/doubled lots of repeated addition balances group (equally/between) product times table combinations scale up balances equal groups multiple sharing groups of total divide inverse twice as big/small as multiplication columns/rows group/groups of left over share (equally/between) count in tens halving multiplied by equal/unequal lots of... signs/symbols division/divided by left/left over once, twice, three/five times equation multiplication table split (equally/between) Skill: 2 times table Skill: 5 times table Skill: 10 times table 99999 99999 00000 00000 32 33 34 35 36 37 38 39 40 23 29 25 29 27 29 29 30 21 22 23 24 25 26 27 28 29 30 42 43 44 45 46 47 48 49 60 33 3 35 39 37 39 39 40 31 32 33 34 35 36 37 38 39 40 52 53 54 55 56 57 58 59 60 41 42 43 44 45 46 47 48 49 60 63 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79 🚳 82 83 84 85 86 87 88 89 9 91 92 93 94 95 96 97 98 99 🕥 Repeated Addition - Recognise equal groups and Skill: Solve 1-step problems using multiplication Year: 1/2 encouraging to count in multiples of 2s, 5s, 10, (3s in Year Children represent multiplication as repeated addition in Year 2 move onto recording repeated addition as many different ways. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 76 15 16 17 18 19 20 multiplication number sentences using the x symbol. In Year 1, children use concrete and pictorial Counting - in 2s, 5s, 10s (3s in Year 2) Forwards and representations to One bag holds 5 apples. solve problems. They How many apples do 4 bags hold? back, missing numbers on the number track or number line are not expected to record multiplication Patter Spotting - seeing equal groups, using arrays for formally. commutativity. In Year 2, children are introduced to the <u>Doubling and Doubling Patterns</u> – (linked to halving in 5+5+5+5=20multiplication symbol. $4 \times 5 = 20$ division) $5 \times 4 = 20$


Year 3 and Year 4

Year 3 Vocabulary Year 4

bar model compact method divided equally divisor equal/unequal parts fact family grouped equally half/double the size how many times bigger/smaller? part-whole model partition quarter/quartering regroup/regrouping remain/remains/remaining remainder scaling up/down ... times bigger/smaller common multiples derive divisible by...

factor pair fraction hundred square lowest common multiple multiples ratio related facts square/squared times table square triple

<u>Times Tables</u> – Children to continue to learn all multiplication and related division facts (inverse). The expectation is that they have learnt all facts up to 12x12 by the end of Year 4.

<u>Multiplying by 10 and 100</u> – Children are taught to relate this to the base 10 system. "When multiplying by 100 the digits move up two place value columns and place holders are added if needed."

45x100 = 4500 and 0.45x100 = 45

<u>Laws</u>

Commutative -6x7 = 7x6 = 42Associative -4x7x5 = 5x4x7 = 20x7 = 140Distributive -12x6 = 10x6+2x6 = 60+12 = 72

Year 5 and Year 6

Year 5 Vocabulary

area model common factors common multiple composite number cube number decimal dividend divisibility formal written method highest common factor long multiplication one thousandth prime factors prime number quotient short division square number

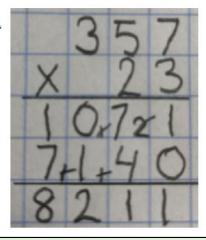
brackets decimal point factor tree long division operations order of operations power of 10 powers prime factorisation

Year 6

repeated subtraction

 $1,826 \times 3 = 5,478$

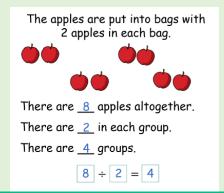
	Th	Н	Т	0
	1	8	2	6
×				3
	5	4	7	8
	2		1	

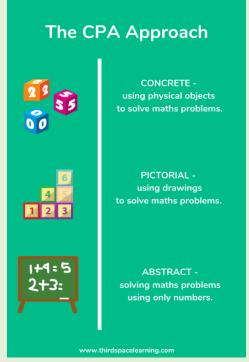

When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on

the use of the written

Long multiplication

Children may come up putting the exchanges in different places than shown. If they are being accurate with this then don't make them change.





Times Tables, Laws and Multiplying and Dividing by multiples of 10,100 and 1000 – Built on from Year 3 and Year 4.

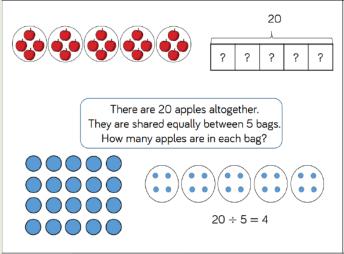
method.

Division

Reception					
Vocab			<u>oulary</u>		
	double each equal	fair sha group half		left over share (out) sharing	
Key Representa	tions and Reso	ources	Mental A	Aethods: Child	ren should learn to
Practical real life	opportunities t	o share-		Double facts to	double 5.
playdough, cars, f	ruit, sports eq	uipment.			
Creating equal groups of items.					
Concrete and Pictorial Representations					
Doubling recipes in mud kitchen or home corner.					

Year 1 and Year 2

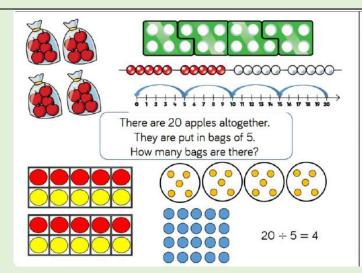
Year 1 Vocabulary


array balances columns/rows count in tens division/divided by double/doubling/doubled equal groups group/groups of halving left/left over

lots of multiple multiplication multiplied by once, twice, three/five times repeated addition sharing

altogether balances combinations divide each equal/unequal equivalent group (equally/between) groups of inverse left over lots of... multiplication table part product scale up set share (equally/between) signs/symbols split (equally/between)

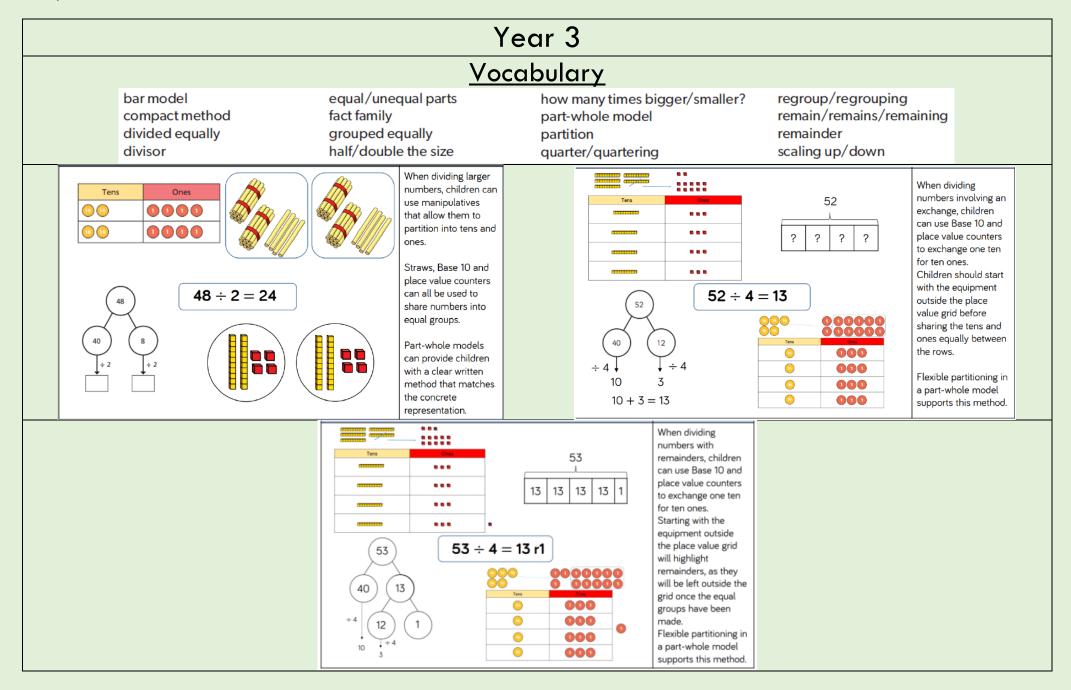
Year 2


times times table total twice as big/small as

Children solve problems by sharing amounts into equal groups.

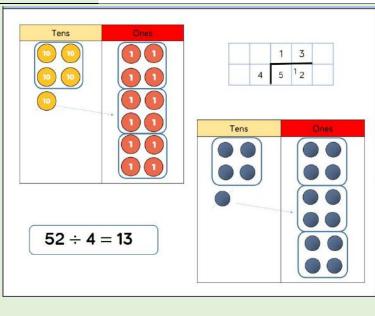
In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally.

In Year 2, children are introduced to the division symbol.


Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line. They can use concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and

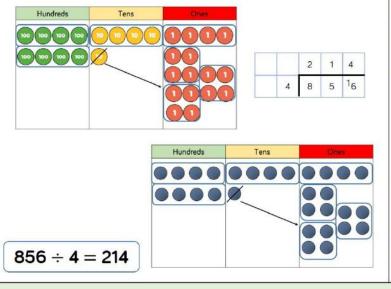
<u>Division as grouping and sharing</u> – grouping/ seeing equal groups from a whole **or** sharing into groups from a whole.

Halving and halving patters (linked to doubling)


<u>Inverse</u> children make connections between multiplication and division (using arrays can show this).

Odd and even numbers working out if a number is odd or even by exploring if it can be shared by 2. Identify even numbers as multiples of 2.

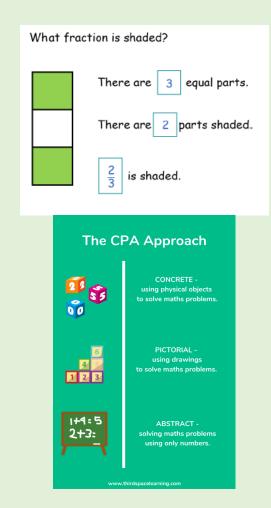
Vocabulary


... times bigger/smaller common multiples derive divisible by... factor pair fraction hundred square lowest common multiple multiples ratio related facts square/squared times table square triple

When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Remainders can also be seen as they are left ungrouped.



Children can continue to use grouping to support their understanding of short division when dividing a 3-digit number by a 1-digit number.

Place value counters or plain counters can be used on a place value grid to support this understanding. Children can also draw their own counters and group them through a more pictorial method.

Year 5 and Year 6 Vocabulary Year 5 Year 6 power of 10 repeated subtraction area model decimal long multiplication short division brackets long division powers decimal point operations common factors dividend one thousandth square number prime factorisation order of operations factor tree common multiple divisibility prime factors formal written method prime number composite number highest common factor cube number quotient When children begin Place value counters to divide up to 4or plain counters can Th 0 be used on a place digits by 2-digits, written methods value grid to support $432 \div 12 = 36$ children to divide 4become the most digits by 1-digit. accurate as concrete Children can also and pictorial draw their own representations 4 2 6 6 counters and group become less effective. 2 8 5 13 12 Children can write out them through a more pictorial method. multiples to support their calculations with Children should be larger remainders. 0 4 encouraged to move Children will also $7.335 \div 15 = 489$ away from the solve problems with 15 concrete and pictorial remainders where the when dividing quotient can be 15 30 45 60 75 90 105 120 135 $8,532 \div 2 = 4,266$ numbers with rounded as multiple exchanges appropriate. Children can also $12 \times 1 = 12$ 0 3 6 $12 \times 2 = 24$ divide by 2-digit 4 3 2 $12 \times 3 = 36$ (x30)numbers using long $12 \times 4 = 48$ $432 \div 12 = 36$ 3 6 0 division. $12 \times 5 = 60$ $12 \times 6 = 72$ $12 \times 7 = 84$ Children can write out 7 2 $12 \times 8 = 96$ multiples to support 0 $12 \times 7 = 108$ their calculations with $12 \times 10 = 120$ larger remainders. 0 4 8 9 $1 \times 15 = 15$ Children will also 7 3 3 5 $2 \times 15 = 30$ solve problems with 6 0 0 0 (x400 $3 \times 15 = 45$ remainders where the $7.335 \div 15 = 489$ 1 3 3 5 quotient can be $4 \times 15 = 60$ - 1 2 0 0 (×80) rounded as $5 \times 15 = 75$ 1 3 5 appropriate. $10 \times 15 = 150$ 1 3 5 (x9) 0

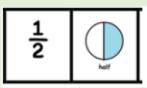
Fractions

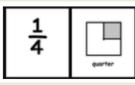
Reception				
<u>Vocak</u>	<u>oulary</u>			
fair share half group halve/halving	parts/parts of a whole sharing share (out) whole			
Key Representations and Resources	Mental Methods: Children should learn to			
Understanding of half through real life learning and play- water bottles, mud kitchen, sand play, water play.	Know halves- up to 10.			
Concrete and Pictorial Representations				
Food play, sharing, in role play in home corner setting table, getting into equal groups for games or sports.				

Vocabulary

double equal parts fraction grouping half/halves quarter(s)

sharing three quarters

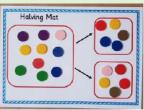

Children should be able to find equal and unequal parts of everyday objects — the leg is a part of a table, my arm is a part of my body.

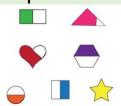

Children should be taught that a fractions is 'an equal' part of a whole. The vocabulary of 'equal' may need to be revisited.

Recognise, find and name a half as one of two equal parts of a whole, and a quarter as one of four equal parts of a whole.

Key Representations and Resources

Representations should be shown using a variety of shapes/objects and in a variety of orientations.

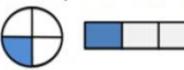


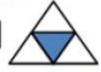


As with division -

Children fine $\frac{1}{2}$ of a number of concrete objects by splitting them into 2 equal groups. They find $\frac{1}{4}$ by splitting a number of concrete objects into 4 equal groups and draw connections between halving and quartering.

Children should also be able to tell you what is and what is not a half or quarter. "it is not a half because the 3 parts are not equal."


Vocabulary


denominator divide equivalent/equivalence factor mixed number non-unit numerator one third third two quarters two thirds

hird unit

Children still need to be aware of equal and unequal groups.

Circle the shapes that have a guarter shaded

Which shapes do not have a quarter shaded? How do you know?

Numerator number of parts being used

Denominator number of equal parts the whole
has been divided into

Children extend their knowledge of whole and half to find quarters, thirds. Followed by three quarters of shapes and quantities.

The links between concrete, pictorial and abstract representations should be make explicit.

The children use their understanding of fractional representation to find fractions of numbers e.g. $\frac{3}{4}$ of 12

=

First draw four squares (four equal parts)

Share 12 equally between them. You have found $\frac{1}{4}$. Now circle 3 squares and count how many are in them to fine $\frac{3}{4}$.

Children should recognise that 2/4 is the same as 1/2

Children will recognise that halving in division is the same as being divided by 2.

Circle one quarter of the cars.

One quarter of ____ is ____

____ is \(\frac{1}{4} \) of ____

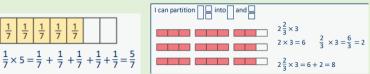


Year 3				
		Vocak	bulary	
	complements decimals eighths fifths	integer ninths non-unit	sevenths sixths fraction tenths	
Adding an	d Subtracting Fraction	าร	Equivalent Fractions	
Children add and subtract fractions with the same denominator within 1. This is aided by visual representations. $ \frac{5}{5} - \frac{1}{5} $ $ \frac{1}{5} + \frac{1}{5} $ $ \frac{1}{5} + \frac{2}{5} $ $ \frac{1}{5} + \frac{3}{5} $			Children use a range of models and images to identify equivalent fractions. Children to spot patterns and create generalisations. E.g. 3 sixths is equivalent to a half because 3 is half of 6.	
Fractions of Amounts			Decimals	
Fractions are directly related to division, e.g. $\frac{1}{2}$ of an object means to divide by 2. $\frac{1}{2}$ of $12 = 12 \div 2$ 12 6		When working with tenths in any of the above children should be reminded of the decimal equivalence. 0.1		

Year 4				
Voca	<u>ıbulary</u>			
cancel equate common fraction hundredths decimal place proportion decimal point set	thousandths twentieth			
Adding and Subtracting	Equivalent Fractions			
Children add and subtract fractions with the same denominator above 1 whole. This is aided by visual representations. $ \frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5} $ $ \frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5} $ $ \frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5} $ $ \frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5} $ $ \frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5} $	Children use a range of models and images to identify equivalent fraction families. Children use knowledge of multiples and factors to begin to calculate equivalent fractions. $ \frac{2}{6} \frac{1}{3} \frac{1}{3} $ $ \frac{2}{6} \frac{6}{9} \frac{9}{9} $			
Fractions of Amounts	Decimals			
Continue to build on work in Year 3 using increasingly larger quantities. $\frac{1}{3} \text{ of } 81 = 81 \div 3$	When working with tenths and hundredths in any of the previously mentioned, children should be reminded of the decimal equivalence. Using place value counters or base 10 to support this.			
81 27 27	0.1 0.01			

Adding and Subtracting

Add and subtract fractions with the same denominator (as per Year 4) and multiples of the same number. Pupils will also add and subtract a fraction from a mixed number, this should be done with understanding and not by changing the mixed number into an improper fraction.


Equivalent Fractions

Continue work from Year 4, using knowledge of multiples and factors to calculate and convert, comparing images to support understanding.

Multiplying Fractions

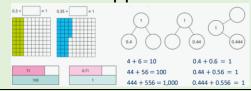
Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. When multiplying proper fractions, pupils should multiply the whole by the numerator – the number of parts.

When multiplying mixed numbers partition, multiply out and recombine.

Vocabulary

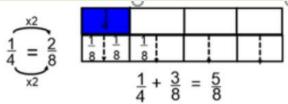
equivalence	proportion
improper	ratio
mixed numbers	reduced to
percentage/percent/%	twelfth
proper	

Fractions of Amounts


Build on Year 4, using images and short division to support finding fractions of numbers or quantities. Divide by denominator and multiply by numerator. Write remainders as a fraction. E.g. find $\frac{1}{2}$ of 25,

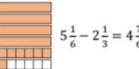
so
$$25 \div 2 = 12 \frac{1}{2}$$

Decimals


Remind pupils of the decimal equivalence with tenths, hundredths and thousandths. Place Value Counters to reinforce this. Add and Subtract decimals, including a mix of whole numbers and decimals, decimals with different numbers of places and compliments of 1 (e.g. 0.83 + 0.17).

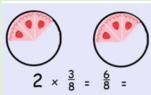
= 1) Line up decimal points and use place holders to support.

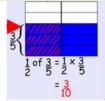
Adding and Subtracting


Pupils will add and subtract fraction that have different denominators using their knowledge of equivalence to change one or all of the

fractions.

Building on their learning from Year 5, the children will add and subtract mixed numbers and be encouraged not to change the mixed numbers to an improper fraction. Where the subtracting fraction is greater than what they have, they will use methods outlined below.


Here is a method to calculate
$$5\frac{1}{6} - 2\frac{1}{3}$$

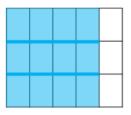


$$5\frac{1}{6} - 2\frac{1}{3} = 4\frac{7}{6} - 2\frac{1}{3} = 4\frac{7}{6} - 2\frac{2}{6} = 2\frac{5}{6}$$

Multiplying Fractions

Pupils will multiply fractions by fractions, and fractions by whole numbers – simplify the product if required.

Vocabulary


integer multiplication missing value relative size scale factor simplify

<u>Dividing Fractions by</u> Whole Numbers

Pupils are encouraged to recognise if the numerator is a multiple of the whole number divisor. If not, they can find an equivalent fraction that is.

$$\frac{3}{5} \div 3 =$$
Let's share 3/5 between 3 people.

How much would each person get?

$$\frac{4}{5} \div 3 = \frac{4}{15}$$

$$\frac{4}{5} = \frac{12}{15}$$